

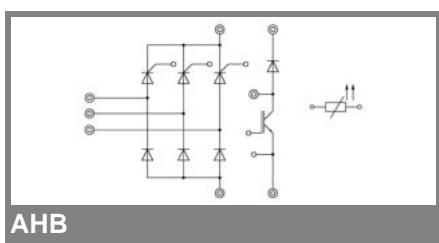
MiniSKiiP® 2

3-phase bridge rectifier +
brake chopper

SKiiP 28AHB16V3

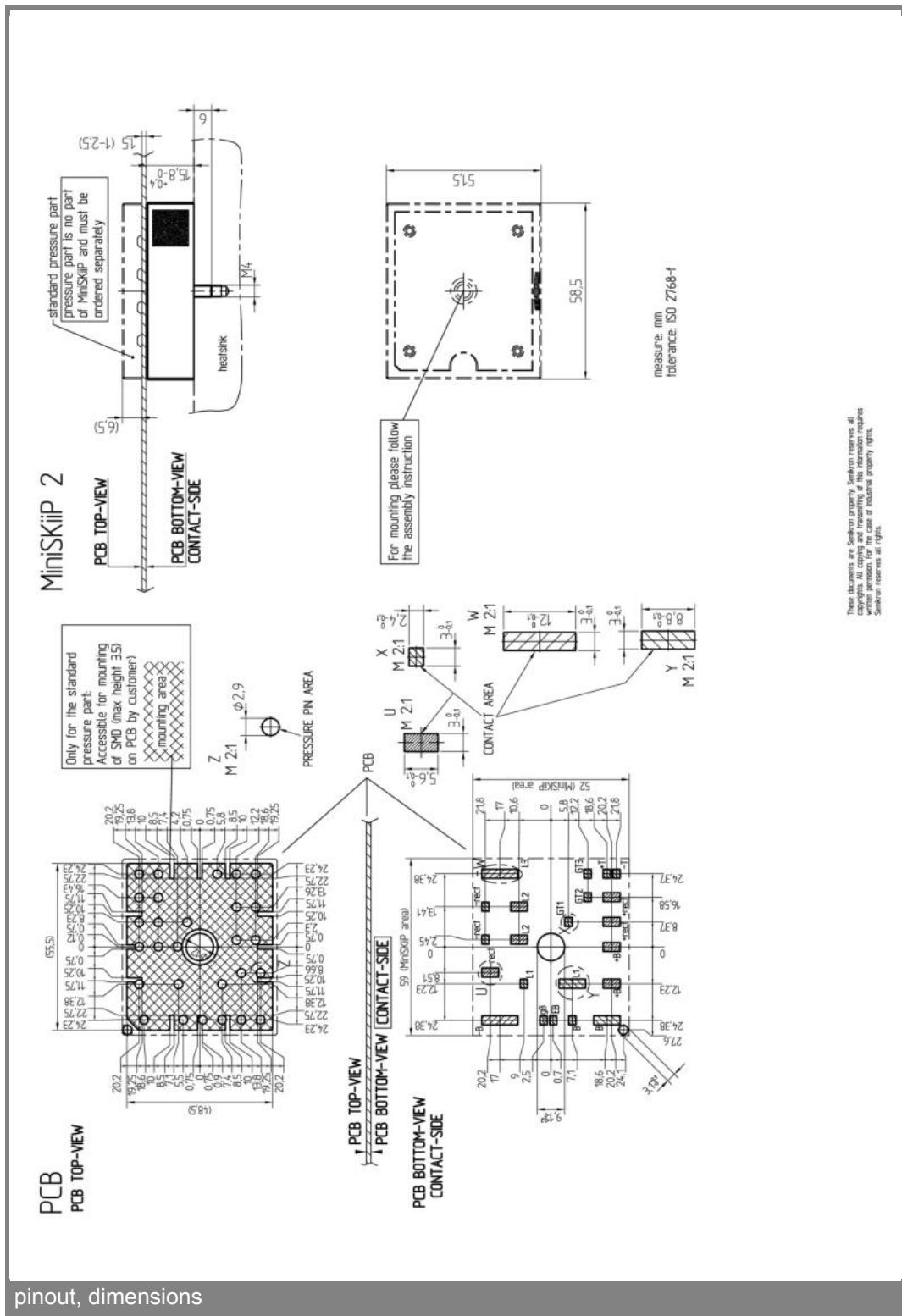
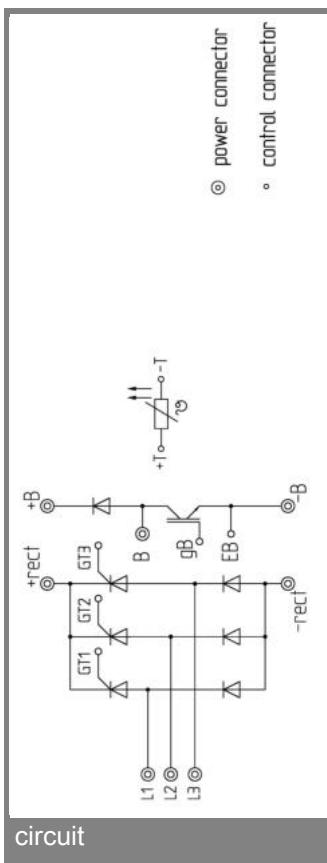
Target Data

Features


- Fast Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Remarks

- V_{CEsat} , V_F = chip level value



Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$, unless otherwise specified	
Symbol	Conditions	Values	Units
IGBT - Chopper			
V_{CES}		1200	V
I_C	$T_s = 25 (70)^\circ\text{C}$	118 (88)	A
I_{CRM}	$t_p \leq 1 \text{ ms}$	210	A
V_{GES}		± 20	V
T_j		-40...+150	$^\circ\text{C}$
Diode - Chopper			
I_F	$T_s = 25 (70)^\circ\text{C}$	118 (88)	A
I_{FRM}	$t_p \leq 1 \text{ ms}$	210	A
T_j		-40...+150	$^\circ\text{C}$
Diode / Thyristor - Rectifier			
V_{RRM}		1600	V
I_F / I_T	$T_s = 70$	82	A
I_{FSM} / I_{TSM}	$t_p = 10 \text{ ms, sin } 180^\circ, T_j = 25^\circ\text{C}$	1000	A
$i_{\bar{t}}$	$t_p = 10 \text{ ms, sin } 180^\circ, T_j = 25^\circ\text{C}$	5500	A^2s
T_j	Diode	-40...+150	$^\circ\text{C}$
T_j	Thyristor	-40...+125	$^\circ\text{C}$
I_{tRMS}	per power terminal (20 A / spring)	80	A
T_{stg}	$T_{op} \leq T_{stg}$	-40...+125	$^\circ\text{C}$
V_{isol}	AC, 1 min.	2500	V

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT - Chopper				
V_{CEsat}	$I_{Cnom} = 105 \text{ A}, T_j = 25 (125)^\circ\text{C}$	5	1,7 (2)	2,1 (2,4)
$V_{GE(th)}$	$V_{CE} = V_{GE}, I_C = 3 \text{ mA}$		5,8	6,5
$V_{CE(TO)}$	$T_j = 25 (125)^\circ\text{C}$		1 (0,9)	1,2 (0,9)
r_T	$T_j = 25 (125)^\circ\text{C}$		6,7 (10)	8,6 (10)
C_{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		8,4	nF
C_{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,5	nF
C_{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,1	nF
$R_{th(j-s)}$	per IGBT		0,4	K/W
$t_{d(on)}$	under following conditions		65	ns
t_r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30	ns
$t_{d(off)}$	$I_{Cnom} = 105 \text{ A}, T_j = 125^\circ\text{C}$		410	ns
t_f	$R_{Gon} = R_{Goff} = 5,5 \Omega$		100	ns
E_{on}	inductive load		14,4	mJ
E_{off}			13,3	mJ
Diode - Chopper				
$V_F = V_{EC}$	$I_{Fnom} = 105 \text{ A}, T_j = 25 (125)^\circ\text{C}$		1,6 (1,6)	1,8 (1,8)
$V_{(TO)}$	$T_j = 25 (125)^\circ\text{C}$		1 (0,8)	1,1 (0,9)
r_T	$T_j = 25 (125)^\circ\text{C}$		5,7 (7,6)	6,7 (8,6)
$R_{th(j-s)}$	per diode		0,55	K/W
I_{RRM}	under following conditions		160	A
Q_{rr}	$I_{Fnom} = 105 \text{ A}, V_R = 600 \text{ V}$		26	μC
E_{rr}	$V_{GE} = 0 \text{ V}, T_j = 125^\circ\text{C}$ $di_F/dt = 5400 \text{ A}/\mu\text{s}$		10,8	mJ

AHB

Characteristics		$T_s = 25^\circ\text{C}$, unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
Diode - Rectifier				
V_F	$I_{F\text{nom}} = 75\text{ A}, T_j = 25^\circ\text{C}$	1,2		V
$V_{(TO)}$	$T_j = 150^\circ\text{C}$	0,8		V
r_T	$T_j = 150^\circ\text{C}$	7		$\text{m}\Omega$
$R_{\text{th}(j-s)}$	per diode	0,7		K/W
Thyristor - Rectifier				
V_T	$I_{T\text{nom}} = 120\text{ A}, T_j = 25\text{ (125)}^\circ\text{C}$		1,8 (1,7)	V
$V_{T\text{(TO)}}$	$T_j = 125^\circ\text{C}$		1,1	V
r_T	$T_j = 125^\circ\text{C}$		5	$\text{m}\Omega$
V_{GT}	$T_j = 25^\circ\text{C}$		3	V
I_{GT}	$T_j = 25^\circ\text{C}$	150		mA
I_H	$T_j = 25^\circ\text{C}$	200		mA
I_L	$T_j = 25^\circ\text{C}$	400		mA
$dv/dt_{(cr)}$	$T_j = 125^\circ\text{C}$		1000	$\text{V}/\mu\text{s}$
$di/dt_{(cr)}$	$T_j = 125^\circ\text{C}$		50	$\text{A}/\mu\text{s}$
$R_{\text{th}(j-s)}$	per thyristor	0,65		K/W
Temperature Sensor				
R_{ts}	$3\%, T_r = 25\text{ (100)}^\circ\text{C}$	1000(1670)		Ω
Mechanical Data				
w		65		g
M_s	Mounting torque	2	2,5	Nm

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.